Issues with Current Incentive Spirometers

Voldyne 5000 Incentive Spirometer

- Unintuitive \rightarrow no instructions on device
- Non-reusable
- Unable to record activity
- No information on importance of using the device

MIR Desktop Spirometer

- Expensive (currently \$2,500)
- Requires training to use
- Overwhelms patients with information/Overly complicated
- Specifically targeted for mobile/office spirometry usage

Cost To Mass Produce

Device Component	Function/Value	Cost
Disposable filtered mouthpiece	Hygiene	\$0.15
Turbine flowmeter	Converts inspiratory flow to angular frequency	\$2
Arduino Feather 32u4	Transmits data via Bluetooth	\$3
3.7 V 1000mAh LiPo battery	Rechargeable power source	\$1
3D printed housing and adaptors	Universal adaptability	\$0.30
7" tablet	Digital display	\$15
Gooseneck bed mount	Accessory component for accessibility	\$3

Acknowledgements

UIC Richard and Loan Hill Department of Bioengineering, UIC Department of Urology, UIC Engineering Makerspace, UI Health, and the UIC Innovation Center.

Inspired Inspiration to Prevent Hospital-Acquired Pneumonia

Team NSPIRE

Brandon Lukas, Michael Lukas, Samantha Labrador, Austin Buen-Gharib

Project Advisors:

Anthony E. Felder, PhD, Clinical Assistant Professor; Miiri Kotche, PhD, Clinical Professor; Dr. Whitney Halgrimson, MD, Resident

Company Sponsors:

Dr. Craig S. Niederberger, MD, Professor & Head, Prof. Peter Pfanner, Research Professor Dr. Michael J. Young, MD, Assistant Professor

RICHARD AND LOAN HILL DEPARTMENT OF BIOENGINEERING COLLEGES OF ENGINEERING AND MEDICINE

UROLOGY COLLEGE OF MEDICINE

Hospital-Acquired Pneumonia

 Most common & fatal hospital infection in the United States

Incidence rate:

• <u>Mortality rate:</u> 18.6%.

1.6%

.

Hospital-Acquired Pneumonia (HAP):

- An infection in the lungs that occurs more than 48 hours after admission to a hospital.
- Common among patients who are recovering from a major surgery. Lungs are partially collapsed following anesthesia and do not inflate well while patients remain in bed.
- Patients are instructed to perform deep breathing exercises with an incentive spirometer as part of their recovery in order to prevent HAP by keeping the lungs well-inflated and airways clear of mucus.

Current incentive spirometers given to patients in hospitals **are ineffective** because:

- <u>Lack of feedback</u> the device fails to indicate if patients perform exercises properly.
- <u>Lack of reminders</u> the device fail to reminding patients when to use it
- <u>Lack of incentives</u> the device is fails to engage patients to keep using the device.

SpiroSMART

Project Objectives

- 1. Present patients' inspiratory flow rate and volume
- 2. Instruct and correct patients in real-time
- 3. Provide adjustable alarm system to remind patients
- 4. Educate patients
- 5. Reward and incentivize patients' activity
- 6. Track and record patients' usage history for clinicians
- 7. Adapt in clinical environment
 - a. Feasible power supply
 - b. Attachable to patient bed-rail
 - c. Hardware protected by durable case
 - d. Easily cleaned with disinfecting wipes
 - e. Economically viable

SpiroSMART Flowmeter:

Dimensions:	180 x 75 x 45 mm	
Mass:	140 g	
Battery Life:	6.5 - 8 hrs	
Components:	 Arduino Feather 3.7 V 1000mAh LiPo battery 3D printed housing & adaptors Disposable filtered mouthpiece 	

SpiroSMART App:

Made with	React Native
Built for	iOS devices
Home Screen	Ball rises as patient breathes in & progress bar to track volume.
Info Screen	Information about HAP & device
Badges Screen	List of various achievements patients completed during use
History Screen:	Tracking patient usage and results of each session
Setting Screen:	Options for nurses to set volume goal for patient & language settings

Conclusion

SpiroSMART serves as a proof of concept that an incentive spirometer can be redesigned to encourage patient engagement and help protect them from hospital acquired pneumonia.